The Implementation of GLCM and ANN Methods to Identify Dragon Fruit Maturity Level
Muhammad Faisal(1*); Maryam Hasan(2); Kartika Candra Pelangi(3);
(1) Universitas Ichsan Gorontalo
(2) Universitas Ichsan Gorontalo
(3) Universitas Ichsan Gorontalo
(*) Corresponding Author
AbstractThe identification of the maturity level of dragon fruit in this study was divided into two groups of ripeness: the unripe and the ripe. This study aims to classify the maturity level based on dragon fruit images using the feature extraction method, the gray level co-occurrence matrix (GLCM). This research method consists of converting RGB data to grayscale, image normalization, detection of dragon fruit maturity, feature extraction, and identification. Data collection from real data totaled 60 images used in this study consisting of 40 training data and 20 testing data which are RGB image data in JPG format. Each data consists of 2 maturity categories. Training data consists of 20 images of 99% ripe dragon fruit and 20 images of 85%. Meanwhile, the testing data consisted of 10 of 99% ripe dragon fruit images and 10 of 85% ripe dragon fruit images. The image data is processed into a grayscale image which then detects the ripeness of the dragon fruit. After the maturity of the dragon fruit is obtained, segmentation is carried out on the location of the dragon fruit found. Then the feature calculation is performed using the Gray Level Co-Occurrence Matrix (GLCM). The Artificial Neural Network (ANN) algorithm is used for the identification process. The final test results show that the proposed method has been able to detect dragon fruit maturity level with an accuracy of = 9/10* 100% = 90%, calculated using the confusion matrix. Thus, implementing the Gray Level Co-Occurrence Matrix and Artificial Neural Network methods to the maturity level problem dragon fruit needs to be developed.
KeywordsPrediction, Dragon Fruit; GLCM; ANN
|
Full Text:PDF |
Article MetricsAbstract view: 189 timesPDF view: 142 times |
Digital Object Identifierhttps://doi.org/10.33096/ilkom.v15i1.1504.64-71 |
Cite |
References
Resty Wulan ningrum, Nandha Veraِ Wihra ِLelita vistaraِ “Discreteِ cosineِ transformِ untukِ identifikasi citra hylocereus costaricensis”, Jurnal SIMESTRIS, Vol 6, No 2, November 2015.
Mochammadِ Yusufِ Habibi,ِ Edwinِ Riksakomaroِ “Peramalanِ harganِ garam konsumsu menggunakan Artifical Neural Network Feed foerward Backpropagation (Studi Kasus : PT. Garam Mas, Rembang, Jawah Tengah)”,ِJurnalِTeknikِITS,ِVolِ6,ِNoِ2,ِ2017.
Muhِ Najibِ Hilmi,ِYucianaِ Wilandri,ِHasbiِ Yasinِ “Pemetaanِ preferensiِ mahasiswa baru dalam memilih jurusan menggunakan Artificial Neural Network (ANN) Dengan Algoritma Self Organizing Maps (SOM)”,ِJurnalِ Gausian, Vol 4, No 1, 2015
Andi ِDiahِ Kuswantoِ dan ِHilman ِPardede,ِ “Komprasiِ Algoritmaِ C4.5,ِ K-Nearest Neighbor dan Neural Network dalam menentukan kelayakan fasilitas ِkreditِ: ِStudi Kasusِ PT.ِBankِ Mega,ِTdk”, ِSNIPTEK, ِISBN:ِ 978602-72850-4-0, 2013
Auliaِ Yudha ِPrathama,ِ Akhmadِ Aminullah,ِ Asharِ Saputra,ِ “Pendekatanِ ANN (Atrificial Neural Network) untuk menentukan prosentase bobot pekerjaan ِdan ِestimasiِ nilaiِ pekerjaanِ strukturِ padaِ rumahِ sakit ِprataa”,ِ Jurnal Teknosains, Vol 7, No 1, Desember 2017.
Mimin Hendriani, Rais dan Lilies Handayani " Penerapan ANN terhadap identifikasi wajah menggunakan metode Backpropagation" jurnal Natural Science 08 no 3: 203-208 Desember 2019
Farel Fathurrahman , Mayanda Mega Santoni , Anita Muliawati "Penerapan ANN untuk klasifikasi citra teks dalam penerjemahan bahasa daerah" Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) ISBN 978-623-93343-1-4, Jakarta Indonesia 14 Agustus 2020.
Restuِ Widodo,ِ Agusِ Wahyuِ Widodo,ِ Arryِ Supriantoِ “Pemenfaatanِ ciriِ Gray Love Co-Occurrence Matrix (GLCM) citra buah jeruk keprok (Citrus Reticulata Blance)ِ untuk ِklasifikasiِ mutu ”ِِJurnalِ Pengembanganِ Teknologi Dan Ilmu Computer, Vol 2 No. 11, 2018
Danielِ Kristantoِ “Berkebunِ Buahِ Naga”,ِ Cet.ِ 1ِ (edisiِ revisi)ِ Jakarta:ِ Penebar Swadaya, ISBN (10) 979-002-629-3, ISBN (13) 978-979-002-6292, 2014.
Warisno,ِS.PKP,ِ Kres ِDahana,ِ SPِ “ِBukuِ pintar ِbertanamِ buah ِnagaِ diِ kebun, pekarangan,ِ danِ dalamِ pot”,ِ Jakarta:ِ PT. Gramediaِ Pustakaِ Utama, ISBN: 978-979-22-5404-4, 2010.
Kahirulِ Umam, ِBeniِ Sukmaِ Negara, ِ“Deteksiِ obyek ِmanusia ِpada ِbasisِ data video menggunakan metode Bacekgrpund Subtraction dan Operasi Morfologi”, ِJurnalِCorIT,ِVolِ2,ِNo 2, Desember 2016.
Restu ِWidodo,ِ Agusِ Wahyuِ Widodo,ِ Arryِ Supriantoِ “Pemenfaatan ِciriِ Gray Love Co-Occurrence Matrix (GLCM) citra buah jeruk keprok (Citrus Reticulata Blance)ِ untukِ klasifikasiِ mutu” ِِJurnalِ Pengembanganِ Teknologi Dan Ilmu Computer, Vol 2 No. 11, 2018.
Jokoِ S.ِ DwiِRaharjo,ِ “Modelِ Artificialِ Neuralِ Network ِberbasis ِparticleِ swarmِ optimizationِ untukِ pediksi ِlajuِ inflasi”,ِJurnalِ Sistem ِKomputerِ Vol 3. No 1, Juni 2013.
J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.
I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.
K. Elissa, “Title of paper if known,” unpublished.
R. Nicole, “Title of paper with only first word capitalized,” J. Name Stand. Abbrev., in press.
Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Muhammad faisal, Maryam Hasan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.