Application of General Regression Neural Network Algorithm in Data Mining for Predicting Glass Sales and Inventory Quantity
Suryani Suryani(1); Indo Intan(2*); Farhan Mochtar Yunus(3); Adammas Haris(4); Faizal Faizal(5); Nurdiansah Nurdiansah(6);
(1) Univeristas Dipa Makassar
(2) Univeristas Dipa Makassar
(3) Univeristas Dipa Makassar
(4) Univeristas Dipa Makassar
(5) Univeristas Dipa Makassar
(6) Univeristas Dipa Makassar
(*) Corresponding Author
AbstractFF Jaya Glass is a shop that supplies and installs 3 mm to 12 mm glass. The store obtained glass from suppliers to be processed in shape and size according to customers’ order. After completing the customer's order, the shop worker will install the glass at the requested location. Unfortunately, currently stores do not utilize sales data to predict sales either manually or by utilizing technology. As a result, the store cannot predict when the number of glass orders will increase or decrease. In addition, errors often occur when ordering glass for the next period. As a result, stores often run out of glass supplies due to the large number of glass orders so that the achievement of profits is not optimal. This study aims to identify sales variables in glass sales data and build a general regression neural network model as a data mining method. In addition, this study aims to iterate to find the best value in the sales data training process, design and create applications according to user needs, and conduct system validation tests. The general regression neural network method is used to predict sales. The results of this study indicate that the application of general regression neural networks can be used to predict sales. This will make it easier for the store to provide glass supplies in the coming months with an accuracy of 98.1%. KeywordsData Mining; General Regression Neural Network; Predicting; Sales; Supply
|
Full Text:PDF |
Article MetricsAbstract view: 328 timesPDF view: 166 times |
Digital Object Identifierhttps://doi.org/10.33096/ilkom.v15i2.1562.229-239 |
Cite |
References
Y. Puspita Sari, S. Yona Sari, and D. Permata Sari, “Implementasi Strategi Pemasaran Produk Kerajinan Anyaman dalam Memaksimalkan Laba di tengah Pandemi Covid-19 pada Toko Amskishop,” Jurnal Pustaka Mitra, vol. 2, no. 1, pp. 50–53, 2022.
I. Setiawan, “Rancang Bangun Aplikasi Peramalan Persediaan Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Toko Barang XYZ,” Jurnal Teknik Informatika, vol. 13, no. 3, pp. 1–9, 2021.
R. Anggraini, P. Sari, S. Aisyah, R. G. Adhiko, T. D. Fadillah, and K. Awalia, “Analisis Perencanaan Dan Pengawasan Persediaan Minyak Kelapa Sawit Pada PT. Pacific Palmindo Industri Medan,” Accumulated Journal (Accounting and Management Research Edition), vol. 4, no. 2, pp. 160–172, Aug. 2022, doi: 10.22303/accumulated.4.2.2022.160-172.
M. B. Soeltanong and C. Sasongko, “Perencanaan produksi dan pengendalian persediaan pada perusahaan manufaktur,” Jurnal Riset Akuntansi & Perpajakan (JRAP), vol. 8, no. 01, pp. 14–27, 2021.
A. A. Rizal and S. Soraya, “Multi Time Steps Prediction dengan Recurrent Neural Network Long Short Term Memory,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 18, no. 1, pp. 115–124, Nov. 2018, doi: 10.30812/matrik.v18i1.344.
N. P. N. P. Dewi, N. K. Kertiasih, and N. L. D. Sintiari, “Modifikasi Fruit Fly Optimiziation Algorithm untuk Optimasi General Regression Neural Network pada Kasus Prediksi Time-Series,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 192–204, Dec. 2022, doi: 10.23887/janapati.v11i3.54521.
R. Tangahu and M. H. Koniyo, “Penerapan Metode DESB dan EOQ untuk Prediksi Penjualan dan Persediaan Mobil,” Jambura Journal Of Informatics, vol. 3, no. 1, pp. 29–43, 2021, doi: 10.37905/jji.v2i2.10384.
M. Juanda Saputra and M. Izman Herdiansyah, “Penerapan Naive Bayes Dalam Memprediksi Penjualan Dan Persediaan Kain Jumputan Pada Toko Batiq Colet Tuan Kentang Palembang,” Jurnal Mantik, vol. 6, no. 2, pp. 2502–2507, 2022.
F. P. Dewanti, S. Setiyowati, and S. Harjanto, “Prediksi Persediaan Obat Untuk Proses Penjualan Menggunakan Metode Decision Tree Pada Apotek,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 10, no. 1, May 2022, doi: 10.30646/tikomsin.v10i1.604.
R. Bagaskara Radite Putra and H. Hendry, “Multivariate Time Series Forecasting pada Penjualan Barang Retail dengan Recurrent Neural Network,” Jurnal Inovtek Polbeng - Seri Informatika, vol. 7, no. 1, pp. 71–82, 2022.
E. Febrion Rahayuningtyas, F. Novia Rahayu, and Y. Azhar, “Prediksi Harga Rumah Menggunakan General Regression Neural Network,” Jurnal Informatika, vol. 8, no. 1, pp. 59–66, 2021, [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Real
S. Mamase, “Prediksi Tingkat Kesejahteraan Rakyat Suatu Kecamatan Menggunakan Generalized Regression Neural Network,” JTII, vol. 07, no. 01, pp. 62–65, 2022.
Y. A. Suryatna, N. Kholis, I. Agung, and W. Aribowo, “Peramalan Beban Puncak Menggunakan Metode Feed Forward Backpropagation Neural Network NEURAL NETWORK,” Jurnal Teknik Elektro. , vol. 10, no. 01, pp. 109–118, 2021.
A. K. Rianingtyas and K. K. Wardani, “Perancangan User Interface Aplikasi Mobile Sebagai Media Promosi Digital UMKM Tour dan Travel,” Jurnal Sains Dan Seni ITS, vol. 7, no. 2, pp. 118–123, 2018.
M. I. Wibawa, F. R. Azzufar, I. R. Firdaus, and M. A. Yaqin, “Survey Teknik-Teknik Database Design Menggunakan Metode Systematic Literature Review,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 3, no. 2, pp. 162–175, Aug. 2021, doi: 10.28926/ilkomnika.v3i2.254.
D. Riswanda and A. T. Priandika, “Analisis Dan Perancangan Sistem Informasi Manajemen Pemesanan Barang Berbasis Online,” Jurnal Informatika Dan Rekayasa Perangkat Lunak, vol. 2, no. 1, pp. 94–101, 2021.
B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, pp. 13–21, Apr. 2021, doi: 10.30813/jbase.v4i1.2729.
S. Narulita, A. Tigor Oktaga, and I. Susanti, “Pengujian Model Prediksi Menggunakan Metode Data Mining Classification Decision Tree Untuk Penentuan Peminatan Peserta Didik,” Media Aplikom, vol. 13, no. 2, pp. 65–79, 2021, doi: 10.33488/1.ma.2.1.305.
I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 10, no. 2, pp. 421–432, 2019.
R. Amalia, “Penerapan Data Mining untuk Memprediksi Hasil Kelulusan Siswa Menggunakan Metode Naïve Bayes,” JUISI, vol. 06, no. 01, pp. 33–42, 2020.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Suryani, Indo Intan, Farhan Mochtar Yunus, Adammas Haris, Faizal, Nurdiansa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.